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ince the early 1980s and the advent of the modern computer, digital radar
imaging has developed into a mature field. In this article, the specific problem of
imaging a rotating target with a stationary radar is reviewed and built upon. The
relative motion between the rotating target and the stationary radar can be used to
create a circular synthetic aperture for imaging the target. Typically, an image is
reconstructed by first reformatting the raw data onto a two-dimensional grid in the
spatial frequency domain (commonly referred to as k-space) and then inverting into the
spatial domain using a Fourier transform. This article focuses on a less popular
reconstruction paradigm, tomographic processing, which can be used to coherently
reconstruct the image incrementally as data become available. Both techniques suffer
from sidelobe artifacts. It is shown that one-dimensional adaptive windowing can be
applied during the reconstruction phase to reduce sidelobe energy while preserving
mainlobe resolution in the image plane. The algorithms are applied to real and
simulated radar cross section data.
(Keywords: BQM-74E, Radar imaging, Spatially variant apodization, SVA, Synthetic
aperture radar, Tomography.)
INTRODUCTION
Until 1979, synthetic aperture radar (SAR) images

were formed using analog techniques, incorporating
optical lenses and photographic film. In 1979, the first
reconstruction of a SAR image was formed on a digital
computer.1 Today, provided the data are available, SAR
images can be formed on relatively inexpensive person-
al computers, which have replaced expensive optical
processors and mainframe computers. This ability has
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led to an explosion of SAR processing techniques over
the past decade. Radar imaging is now an invaluable
instrument in many scientific fields.

A radar image is formed by illuminating a scene and
resolving the resulting scattering distribution into
range and cross-range dimensions, where the range
component measures a reflector’s radial distance from
the radar. This procedure provides a two-dimensional
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map of the spatial scattering distribution. Two compo-
nents are essential for providing this spatial resolution:
frequency diversity and spatial diversity.

Frequency diversity provides range resolving capa-
bilities and is achieved by using a wideband radar to
illuminate the target scene. After the wideband return
data are processed, a range profile, or projection, can
be generated that characterizes the scattering distribu-
tion of the scene along the range axis. This profile is
a one-dimensional projection of the three-dimensional
spatial scattering distribution onto the range axis. The
profile is resolved into range cells whose resolution is
inversely proportional to the bandwidth of the transmit
signal. The energy returned from each cell is the inte-
grated contribution of all scatterers inside the antenna
beam in that particular range cell. Since the beamwidth
of a reasonably sized real antenna at radio frequencies
generates a correspondingly large cross-range cell in the
far field, the fine resolution necessary to resolve small
targets in the cross-range (azimuth) direction cannot be
obtained directly.

To further resolve the target scene into the cross-
range dimension, the radar system must have either a
large aperture or spatial diversity. This requirement can
be met by using a real array of antennas; at radio fre-
quencies, however, a large and expensive array is nec-
essary to generate reasonable resolution (i.e., 0.1–
2.0 m). To solve this problem, the relative motion
between the target scene and the radar can be used to
generate the necessary spatial aperture. This is the basis
of SAR, which was discovered by Carl Wiley in 1951.1,2

This article concerns only SAR processing where the
relative motion between the target and the radar forms
a circular antenna aperture. If the target is held station-
ary while the radar platform traces out the circular
aperture, the processing is called spotlight-mode SAR
(Fig. 1a). An equivalent result can be obtained if the
radar can be held stationary while the target is rotated
to provide the relative motion (Fig 1b). Whenever the
object’s motion is used to generate the synthetic
aperture, the processing is called inverse SAR (ISAR).

(a) (b)

Figure 1. Illustration of relative motion where (a) the radar pro-
vides the motion, and (b) the target provides the motion for
generating a circular aperture.
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For the rest of this article, ISAR processing refers to the
specific case of a rotating object.

This article reviews the tomographic process and its
application to SAR imaging when the relative motion
between the object and the radar generates a circular
aperture. One-dimensional adaptive sidelobe cancella-
tion techniques are introduced into the tomographic
reconstruction process. Applying adaptive processing
can greatly reduce the sidelobe artifacts formed in the
tomographic image without degrading spatial resolu-
tion. The results are applied to a simulated data set and
to actual radar cross section (RCS) measurements
performed on a BQM-74E target drone.3

RADAR CROSS SECTION
MEASUREMENTS

RCS measurements were collected at the Naval Air
Warfare Center Weapons Division’s Radar Reflectivity
Laboratory (RRL) in Point Mugu, California, to char-
acterize the scattering mechanisms on the BQM-74E
target drone for the Mountain Top Project. Four fre-
quency bands (UHF, C, X, and Ka) were used. Al-
though both bistatic and monostatic measurements
were made, only the monostatic measurements are
considered here. All of the monostatic RCS measure-
ments made on the BQM-74E were collected in RRL’s
large anechoic chamber, which has a usable range
length of 72 ft. To provide far-field measurements, a
Scientific-Atlanta compact range collimating reflector
with a 16-ft quiet zone was used as a plane-wave trans-
ducer. During the data collection, the drone was rotated
through 180° in 0.1° angular increments. At each step,
it was illuminated with a swept linear-FM radar, and the
return was sampled and recorded on an HP 9000 com-
puter.3 Frequency sampling at X and C band provided
15 m of unambiguous range extent.

The BQM-74E (Fig. 2a) is a reusable subsonic
turbojet-powered target drone used primarily to simu-
late a low-altitude antiship missile. It has a fuselage
length of 12.9 ft, a wing span of 5.8 ft, and a maximum
fuselage diameter of 14 in. Since these drones are used
for a variety of missions, optional payload kits can be
installed to change their functional configurations. For
the Mountain Top experiment, the drones were
modified to an LEC-305 configuration, which consists
of seven different antennas and a metal-taped, fiberglass
nose cone that reduces RCS by shielding internal
components.3 The antenna placements are shown in
Fig. 2b.

TOMOGRAPHIC PROCESSING
This section reviews the basic concepts necessary for

understanding the tomographic process and shows how
these concepts are applied to reflection tomography or,
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more specifically, to radar imaging.4,5 Tomography at-
tempts to reconstruct an object (form an image) from
its one-dimensional projections. In X-ray tomography,
the projections are density measurements, whereas in
radar tomography, they are range profiles (see the boxed
insert, Range Processing). We start by examining the
simple case of inverting, or “imaging,” an object with
rotational symmetry and then showing how the Fourier
slice theorem is used to extend this process to non–
rotationally symmetric objects. Next a simple nondif-
fracting, parallel ray, coherent back-projection algo-
rithm is considered for reconstructing the images. In all
the following calculations, it is assumed that the target
is illuminated in the antenna’s far field.

Rotational Symmetry
Two-dimensional rotationally symmetric functions

can be “imaged” by considering the Fourier–Abel–
Hankel cycle (see the boxed insert for a review of this
cycle). Tomographic imaging is a natural extension of
this cycle for non–rotationally symmetric functions.
The immediate implication of this cycle is that the
Hankel and Abel transforms can be calculated without
having to compute Bessel functions and derivatives,
respectively. Another implication is that a two-
dimensional rotationally symmetric function can be
inverted by computing the Abel transform (finding its

Figure 2. BQM-74E target drone (a) in flight, and (b) with antenna
placements used in the tests for the Mountain Top Project. Dashed
lines indicate the position of antennas on the underside of the
fuselage.

(b)

(a)
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projection), and following with a one-dimensional
Fourier transform, instead of requiring a two-dimensional
Fourier transform. This result is pleasing but is not
practical in real imaging situations, because the object
to be imaged is rarely circularly symmetric. The result
can be extended to nonsymmetric functions, however,
through the use of the Fourier slice theorem.

RANGE PROCESSING
Before examining any imaging techniques, it is useful to

review the process of generating a range profile. Range
processing is a basic concept that can be explained in terms
of propagation delay and Fourier analysis. A radar can
measure the range to a target by determining the propaga-
tion delay. If the radar is monostatic, the range R is simply

R
c= t

2
, (A)

where t is the propagation delay, and c is the speed of light.
If the transmitted signal has a finite bandwidth, the range
resolution can be determined by considering a unit time–
bandwidth product. The range resolution equation becomes

DR
c
B

=
2

, (B)

where B is the transmitted bandwidth. It follows that the
range resolution is inversely proportional to the transmitted
bandwidth.

Generating a range profile requires that the scattering
mechanisms be properly sorted into range cells dictated by
the transmitted bandwidth. If the transmitted signal is
modeled as a sum of complex sinusoids subtending the band-
width, the total return from one transmitted pulse will be

G f s t e dtj ft( ) ( ) ,
–

= ⌠
⌡ ∞

∞
2p (C)

where s(t) is the scattering distribution represented as a
function of time t (range). It is clear from Eq. C that the
radar return measures the Fourier transform of the scattering
distribution over the defined bandpass region. An estimate
of the scattering distribution may now be obtained by in-
verting the Fourier transform:
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where ˆ( )s t  is commonly referred to as the range profile and
is the estimate of the scattering distribution along the range
axis over a finite bandwidth. Note that Eqs. A–D assume
that a large instantaneous bandwidth is transmitted. It is
easily shown that these equations also hold for a synthesized
bandwidth (e.g., a swept linear-FM system).6
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THE FOURIER–ABEL–HANKEL CYCLE
The zero-order Hankel transform is

a one-dimensional transform that can
be used to determine the two-dimen-
sional Fourier transform of a rotation-
ally symmetric function. This apparent
simplification results from the fact that
a two-dimensional rotationally sym-
metric function f(x, y), when ex-
pressed in polar form, is dependent on
only a single parameter, namely, the
radial distance r, where r x y= +2 2 ,
and is independent of the spatial azi-
muth angle u. Furthermore, the Fouri-
er transform F(u, v) also exhibits rota-
tional symmetry and is dependent only
on the radial frequency q, where
q u v= +2 2 , and is independent of
the frequency azimuth angle f. A straightforward derivation
of the Hankel transform is given by Bracewell7 and is sum-
marized as follows:

F u v f x y e dx dy
c

j ux vy( , ) ( , ) ,– ( )= ⌠
⌡

⌠
⌡

+2p
(I)

F u v F q f r e r dr dj q r( , ) ( ) ( ) ,
0

– cos( – )= = ⌠
⌡

⌠
⌡

∞

0

2
2

p
p uu f  (II)

where f(r) and F(q) are the polar representations of the
rotationally symmetric functions f(x, y) and F(u, v), respec-
tively, and c is the speed of light. After some manipulation,
Eq. II can be expressed as

F q f r J qr r dr( ) ( ) ( ) ,= ⌠
⌡

∞

2 2
0

0p p (III)

where F(q) is defined as the zero-order Hankel transform of
f(r), and J0 is the zero-order Bessel function.

The Abel transform is used to describe the one-
dimensional “density” projection or line integral of a two-
dimensional function. For rotationally symmetric functions,
this line integral is identical in all directions; thus, it can
be defined on any axis.7 For convenience, it is defined on
the x axis as

f x f x y dyA( ) .
–

= ⌠
⌡

+( )
∞

∞
2 2 (IV)

Using Fig. A, and noting that dr/dy = sinu = r x r2 2– , an
alternative definition expressed in terms of r is given by

f x
f r r

r x
drA

x
( )

( )

–
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⌡
∞

2
2 2 (V)

The inverse Abel transform, derived by Bracewell,8 is pre-
sented here as

f r
f x

x r
dxA( ) –

( )

–
.= ′⌠

⌡
∞

1
2 2p r

(VI)

Figure A. Geometry for the Abel transform.

Inverting the Abel transform numerically using Eq. VI
requires determining a derivative. Since numerical errors can
occur during this operation and are exacerbated by the
integration, a better method is to use the Fourier–Abel–
Hankel cycle for inversion. This cycle is valid for circular
symmetric functions whose cross section is by definition an
even function. Given that the Fourier transform of an even
function is its own inverse (i.e. F = F–1), Bracewell7 proved
that

HFA = I AHF = I FAH = I

FHA–1 = I HA–1F = I A–1FH = I ,
(VII)

where I is the identity transform, H is the zero-order Hankel
transform, and A is the Abel transform. Using the identities
HH = I and FF = I with the preceding identities, the follow-
ing equations are easily derived:

H = FA  A = FH  F = AH

H = A–1F  A–1 = HF  F = HA–1 .
(VIII)

These equations form the basis of the Fourier–Abel–Hankel
cycle shown in Fig B.

Figure B. Fourier–Abel–Hankel cycle (based on Bracewell,7

Fig. 14-4).
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Fourier Slice Theorem
The Fourier slice theorem removes the rotational

symmetry requirement from the Fourier–Abel–Hankel
cycle (and effectively removes the Hankel transform,
since it is valid only for two-dimensional rotationally
symmetric functions). The modified cycle is given in
Fig. 3.

The Fourier slice theorem simply states that the
Fourier transform of an object’s projection (Abel trans-
form) will yield a slice of the two-dimensional Fourier
transform oriented at the same angle as the projection.
For completeness, this result is derived as follows:

Consider the rotated coordinate frame of Fig. 4,
where x9 = x cos u + y sin u and y9 = y cos ␣u ␣ – ␣x␣ sin␣ u
define the projection onto the x9 axis as

p x )= s x , y dy .
–

u( ( )′ ⌠
⌡

′ ′ ′
∞

∞

(1)

Taking the Fourier transform of the projection, we have
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where f is frequency. Relating Eq. 2 to the two-dimen-
sional Fourier transform, we have

P f S f S f fu u u u( ) ( , ) ( cos , sin ) .= = (3)

Thus, it has been shown that the Fourier transform of
an object’s projection is equivalent to a slice of its two-
dimensional Fourier transform oriented at the projec-
tion angle.

The Fourier slice theorem provides another means
for calculating the Fourier transform of a two-
dimensional scene. Unfortunately, it provides no com-
putational advantage. If the projections are provided,
however, then the two-dimensional Fourier transform
can be built rapidly. Typically, this direct method is not
used because the Fourier transform of the projection is
not available, but in radar systems, the projection’s
Fourier transform is measured directly. Therefore, this
method is computationally efficient in forming the
two-dimensional Fourier transform of the scene. This
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Figure 4. Geometry for derivation of the Fourier slice theorem
(u = azimuth angle).

Figure 3. Cycle of transforms implied by the Fourier slice theorem
(based on Bracewell,7 Fig. 14-5).
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Both of the aforementioned methods for inverting
the two-dimensional Fourier transform require that the
entire frequency domain description be available. Since
projections are collected serially, it would be beneficial
if one could perform the image reconstruction by
combining the projections directly to get the final image;
thus, the image could be formed iteratively. This method
of image reconstruction is called back-projection.

Back-Projection
Back-projection was devised as a technique to recon-

struct straight-ray tomographic images. The basic idea
is to shadow each projection (properly oriented) over
the image scene and sum the shadows to form an image.
This algorithm is easily derived by rewriting the Fourier
slice theorem.5

The inverse two-dimensional Fourier transform in
rectangular coordinates is given by

s x,y S u,v e dudv
– –

j (ux+vy)( ) ( ) .= ⌠
⌡

⌠
⌡∞

∞

∞

∞
2p (4)

Changing to polar coordinates with u = f cos u and
v = f sin u, the transform can be rewritten as

s x,y S f e f df dj f(x +y )( ) ( , ) .cos sin= ⌠
⌡

⌠
⌡

∞

0

2

0

2
p

p u uu u (5)

Expanding the preceding integral into two integrals
from 0 to p and p to 2p gives

s x,y S f e f df d

S f e f df d

j f(x +y )

j f x y
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Recall that cos(u + p) = –cos u and sin(u + p) = –sin u
and S(–f, u) = S(f, u + 180). After substituting and sim-
plifying, we have

s x,y S f e f df d
–

j f x y( ) ( , ) .( cos sin )= ⌠
⌡

⌠
⌡ ∞

∞
+

0

2
p

p u uu u (7)

Substituting Eq. 3 in Eq. 7 and changing coordinates
with respect to Fig. 4 yield
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s x,y P f e f df d
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Note that the inner integral in Eq. 8 is just the pro-
jection pu(x9) filtered by a factor Z f Z. Define the filtered
projection as

q x P f f e df
–

j fx
u u

p( ) ( ) .′ = ⌠
⌡ ∞

∞
′2 (9)

Now, substituting Eq. 9 in Eq. 8 gives the back-projection
equation:
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From Eqs. 9 and 10 it is clear that the image is
constructed successively as each projection is acquired.
This process enables the image to be constructed seri-
ally, eliminating the need to wait for all projections to
become available for processing to begin. At each step,
the resulting image can be viewed, with successive
projections increasing its fidelity. In some circumstances
the intermediate images may provide valuable information
(e.g., target identification or classification processors).

At a first glance, the high-pass filtering operation
implied by Eq. 9 may not seem unusual, but a closer
inspection reveals that the square of the filter function
Z f Z is not integrable, which implies that its Fourier
transform does not exist. This integral can be approx-
imated, as is shown by Kak4 and Bracewell.7 If one
numerically performs the integration implied by Eq. 9,
the resulting image will have lost its DC component
and will be distorted because of periodic convolution
and interperiod interference.4 An exact solution for the
integral exists if the filter can be band-limited. This
condition can be asserted without loss of generality
because the projection is a real signal and is therefore
band-limited. For the band-limited case, the impulse
response of the filter becomes

h x f e df

h x
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where B is the transmitted bandwidth and t = 1/B. In
the preceding case, the impulse response is computed
only over a finite interval and is then inverted, causing
its response to depart from the ideal response at lower
frequencies. Since only a finite number of points in the
impulse response are considered, the frequency response
tails off to a positive number slightly above zero at DC.4

This offset maintains the actual DC level of the image
and also removes the distortion caused by the interpe-
riod interference. When this correction is applied to
the projections, the reconstruction process is called
filtered back-projection. It is important to point out
that this correction is unnecessary in the tomographic
computation of circular aperture radar images, because
the Fourier data typically exist only along an annular
region in the spatial frequency domain (k-space) and
therefore naturally act as a “high-pass” filter, similar to
Eq. 11.6,9,10

Reflective Tomography
The equations derived in the previous section de-

scribe a method used in straight-beam X-ray tomogra-
phy where diffraction effects do not occur. (Other der-
ivations exist, such as fan-beam tomography.) Since a
density projection is measured by an X-ray, it is assumed
that a rotation of 180° will produce an identical (but
rotated) density projection. Note that this is not the
case when electromagnetic waves are used, as diffrac-
tion and refraction effects can occur when an object is
illuminated. In this case, to completely characterize the
object, a 360° rotation is required. It can be shown,
however, that these straight-beam equations are a good
approximation for reflective tomography if the object
is in the far field of the radiating source or, equivalently,
if a plane-wave transducer is used.4 In this article, we
use the straight-beam equations as derived in the pre-
vious section (without the filtering), along with a target
rotation of 180°, to reconstruct the images (data were
unavailable for a target rotation of 360°).

Sidelobe Reduction
One problem prevalent in both conventional SAR

and tomographic SAR imagery is range sidelobes.
Wherever the target has a sizable RCS, energy can
“bleed” into other range and cross-range cells, forming
sidelobes. Sidelobes can greatly degrade image quality
and mask details in the computed image. Since the
back-projection technique synthesizes an image con-
currently as projections become available, it is desirable
to window the projections directly, reducing their side-
lobes, prior to back-projecting. Clearly, reducing the
sidelobes in the range profile (projection) will reduce
the sidelobes in the resulting image. This section focus-
es on one-dimensional windowing techniques for re-
ducing sidelobes in the range profile.
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Hanning Window

A simple but effective technique for reducing side-
lobes is to window the data with a raised cosine window.
This window can be applied to the spatial frequency
data prior to zero padding and inversion. The resulting
range profile has greatly reduced sidelobes; the cost,
however, is a reduction in spatial resolution. In some
cases, it is unclear whether the reduced sidelobes are
worth the trade-off of lower spatial resolution. When
a tomographic radar image is formed with Hanning-
windowed range profiles, the resulting image shows a
noticeable loss of resolution.

Spatially Variant Apodization

Spatially variant apodization (SVA) is a nonlinear
windowing technique that adaptively calculates the
optimal type of raised cosine window at every point in
the inverse domain. Apodization, a term borrowed from
optics, refers to the reduction of sidelobe artifacts. This
technique, devised by Stankwitz et al.,10 provides con-
siderable sidelobe reduction over traditional windowing
while maintaining maximum resolution. The basics of
this technique are easily understood by considering the
effect of multi-apodization.

Multi-apodization combines the results of multiple,
uniquely windowed transforms on a data segment (in-
cluding a rectangular window). After the transforms are
calculated, a “composite” result is formed choosing the
minimum magnitude on a point-by-point basis over all
of the transformed data sets. Since the transform of the
rectangular window provides the narrowest mainlobe,
the resulting mainlobe for the composite is identical to
that of the rectangular window. Thus, the high-
resolution properties of the rectangular window are
preserved while the sidelobes are reduced as dictated by
the properties of the windows chosen in the scheme.
This technique is illustrated in Fig. 5.10

Multi-apodization, while simple to implement, can
reduce sidelobes only to an extent dictated by the
windows in the scheme. Although adding windows to
this scheme can further reduce sidelobes, the compu-
tational burden of doing so ultimately limits the
amount of sidelobe reduction possible. If the window
type is restricted to the family of raised cosine windows,
then SVA can be used to provide an effective contin-
uum of multi-apodizations based on a raised cosine of
a specific order K – 1. Consider the general form for the
family of raised cosine windows given by

w t
T

kt
TK k

k

k=

K
( ) (– ) cos ,=







∑1
1

2

0
a

p
(12)

where T is the time extent of the window, 0 < t < T
(Nuttall11), and a is a weighting factor. From Eq. 12,
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it is easily seen that a (K – 1)th-order raised cosine
window will contain a constant term and K – 1 cosine
terms. For a first-order raised cosine window, only the
first two terms in Eq. 12 are considered, and after
normalization we have

w(n)=1 – 2a cos(2pn/N) , (13)

where 0 < n < N. If the minimum value of Eq. 13 is
constrained to be greater than zero, a is bound between
zero and one-half. As a is continuously varied, an entire
family of first-order raised cosine windows can be gen-
erated. With this restricted family of raised cosine win-
dows, the SVA algorithm is tasked with determining the
optimal a (window) for each point in the transformed
domain. This is now equivalent to a continuum of multi-
apodizations (for the family of first-order raised cosine
windows), resulting in an adaptive window that optimally
reduces sidelobes while maximizing mainlobe resolution.
To determine a, we minimize the square magnitude in
the inverse domain of the windowed data. Stankwitz et
al.10 give the derivation of the optimal a for a first-order
raised cosine window, and the result is given as

a =
+ +









Re
( )

[ ( – ) ( )]
,

g m
g m g m1 1 (14)

where 0 < a < 0.5 and g(*) is the transformed data. The
output can now be defined in terms of a three-point
convolution between the transform of Eq. 13 and g(*):

f(m) = g(m) + a[g(m – 1) + g(m + 1)] . (15)
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Figure 5. Results of Fourier transform on sinusoid with (a) rectangular window,
(b) Hanning window, and (c) dual apodization using rectangular and Hanning windows.
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Stankwitz et al.10 explored nu-
merous apodization techniques, in-
cluding complex dual apodization
(CDA), joint in-phase and quadra-
ture SVA (described in Eqs. 14 and
15), and separate in-phase and
quadrature SVA. CDA is a dual
apodization technique that uses
complex information in the data to
improve the sidelobe behavior. It
involves transforming data win-
dowed with Hanning (a = 0.5) and
rectangular (a = 0) windows. Con-
sidering each in-phase and quadra-
ture component independently, a
composite result is formed on a
point-by-point basis in the follow-
ing manner:

1. If the windowed components are
of the opposite sign, set the compos-
ite value to zero.

ed components are of the same sign, set
 value to the number whose absolute
imum.
ditional information in the complex

etermine if there is a window between
ghting and the rectangular weighting

he composite value. This procedure
family of first-order raised cosine win-
sized from the output of two windows.

ed raised cosine window will have a
roportional to the number of terms in
r the first-order raised cosine window,

to a roll-off of f 3. If an additional term
xpansion, the roll-off will increase to
expense of added complexity. After
general form of a second-order raised
or continuity at the boundaries, we

os(2pn/N) + (a–1)cos(4pn/N) , (16)

. As before, a can be adapted to yield
dow at each point in the inverse do-
i12 shows that a is given by

+ +
+ + + +
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/3. The output can again be defined
volution between the transform of Eq.
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COHERENT TOMOGRAPHIC
ALGORITHMS

Generating accurate ISAR images using tomograph-
ic algorithms requires careful implementation. Two
potential pitfalls include insufficient interpolation of
the range profile (projection) and inaccurate represen-
tation of the raw frequency data. Either dramatically
hinders image formation.

The back-projection algorithm presented previously
did not account for discrete data samples. It assumes
that a continuous range profile is available. Since this
is not the case, the data must be interpolated in a
sufficient amount to minimize errors when projecting
onto a discrete image grid. For the images presented in
this article, all of the range profiles were oversampled
10 times relative to the grid dimensions. The range
profile was interpolated by zero-padding the frequency
data prior to inversion. When back-projecting, the
nearest point in the profile was selected as the value
for the grid point. This method proved to be compu-
tationally more efficient than linearly interpolating the
range profile during the back-projection process for
each individual point.

Coherent back-projection requires the phase of each
range profile to be properly represented. Therefore, the
raw frequency data must be translated relative to the
place in the spectrum where the data were acquired.
This translation amounts to a multiplication in the
spatial domain with a complex sinusoid that affects
only the phase of the range profile. This operation is
similar to the focusing correction in conventional
ISAR processing. Care must be taken in the application
of the phase correction, as it can be aliased during the
back-projection process if the range profile was insuf-
ficiently interpolated.

With the preceding discussion in mind, two slightly
different tomographic algorithms were designed to re-
construct the raw ISAR data. Both algorithms share a
common back-projection implementation but differ in
the application of the adaptive spectral window. The
“radial” algorithm applies the adaptive window directly
to the raw data prior to interpolation, whereas the
“interpolative” algorithm applies it afterwards. With
the radial algorithm, the adaptive window parameter
and convolution are calculated only on real data points,
making the radial algorithm computationally more ef-
ficient. The three-point SVA formulation described by
Eq. 15 was used with both the radial and interpolative
JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 18, NUMBER 3 (1
algorithms, and the five-point formulation described by
Eq. 18 was used only in the interpolative algorithm.
These algorithms were compared, and results are given
in the next section.

Both the radial and the interpolative algorithms rely
on the application of an SVA window to each projec-
tion prior to back-projecting. Since both algorithms
reduce sidelobes in the projection to a degree greater
than or equivalent to the reduction of the Hanning
window technique, it seems safe to assume that the
resulting image will also display the same character.
This would certainly be true if the projections were real
(as in X-ray tomography); however, this logic breaks
down when one considers a complex projection. The
complex projection requires a back-projection algo-
rithm to perform complex integrations to form the
image. Since the formation is linear, the phase of the
projection becomes important. SVA, being a nonlinear
technique, affects the phase of each projection. When
the image is built using these projections, the sidelobe
level is not necessarily lower than that of the Hanning
window everywhere, because no constraint was put on
the phase at each point in the projection. Experimen-
tally, it has been shown that sidelobe reduction is hin-
dered wherever multiple sidelobes interfere. In one of
the results, an apodization was performed on the five-
point interpolative window with the Hanning window.
A more formal solution has been devised by the author
and is currently under investigation.

RESULTS OF ALGORITHM
EVALUATIONS

Three data sets were used to evaluate the coherent
tomographic algorithms discussed in the previous sec-
tion. One data set consisted of eight simulated point
reflectors arranged in an “aircraft” configuration. These
data were used to debug and evaluate the algorithms.
The other two data sets contained C-band and X-band
RCS data collected on the BQM-74E target drone at
RRL. The C-band data are of lower resolution than the
X-band data since the measurement bandwidths were
1 and 4 GHz, respectively. For comparison with the
radial and interpolative algorithms, coherent tomo-
graphic images were also computed using rectangular
and Hanning windows. The images resulting from ap-
plying these various coherent tomographic algorithms
to the three data sets are shown in Figs. 6 to 8.

In all of the data sets, it is apparent that the sidelobes
of the rectangular window are contaminating the image
(Figs. 6a, 7a, and 8a). The application of a Hanning
window to the data prior to back-projection reduces the
sidelobes; however, the resolution loss is quite apparent
(Figs. 6b, 7b, 8b). In the target drone images, this
resolution loss produces blurring in the various images,
which is very apparent in the target drone reconstructions.
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Figure 6. Normalized RCS images formed
from point simulation data using coherent
back-projection. (a) Rectangular window,
(b) Hanning window, (c) radial three-point
SVA, (d) interpolative three-point SVA, (e)
radial five-point SVA, and (f) interpolative
five-point SVA. Each image is scaled to
represent a 4 3 6 m area.

Figure 7. Normalized RCS images formed
from 1-GHz C-band BQM-74E RCS data
using coherent back-projection. (a) Rect-
angular window, (b) Hanning Window, (c)
radial three-point SVA, (d) interpolative
three-point SVA, and (e) interpolative five-
point SVA. Each image is scaled to repre-
sent a 4 3 8 m area.
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Figure 8. Normalized RCS images formed from 4-GHz X-band BQM-74E RCS data using
coherent back-projection. (a) Rectangular window, (b) Hanning Window, (c) interpolative
three-point SVA, (d) interpolative five-point SVA, and (e) composite (Hanning and
interpolative five-point SVA). Each image is scaled to represent a 4 3 8 m area.
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Concentrating on the simulated data set (Fig. 6), we
see that the images resulting from the application of the
radial and interpolative algorithms constrain the width
of the mainlobe of each point source to be equivalent
to that of the rectangular window. Thus, the maximum
possible resolution is retained. It is apparent, however,
that the radial algorithms are limited in their ability to
reduce sidelobes in the reconstructed images (Figs. 6c
and 6e). When the interpolative algorithms are applied
to the process, the sidelobe levels are suppressed to a
much greater degree, with the five-point algorithm
(Fig. 6f) performing better than the three-point algo-
rithm (Fig. 6d).

Now turning to the BQM-74E target drone RCS
data collected at RRL, consider the C-band images
generated with a bandwidth of 1 GHz (Fig. 7). Again,
heavy sidelobe artifacts are apparent in the reconstruc-
tion with the rectangular window (Fig. 7a), and again
the application of a Hanning window prior to back-
projection decreases resolution in the reconstructed
image (Fig. 7b); however, there is good sidelobe rejec-
tion. When the radial three-point window is applied to
the data (Fig. 7c), the sidelobe reduction is dubious at
best. This can be contrasted with the three-point and
five-point interpolative algorithms (Figs. 7d and 7e),
which provide good sidelobe rejection without trading
spatial resolution. In the C-band reconstructions of
Fig. 7 it is unclear why the upper half of the drone body
shows a significantly smaller RCS than the lower half.
This result is not an artifact of the reconstruction
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process; whether it is a propagation
phenomenon or an artifact of the
measurement process is unknown.

The RCS imbalance in the
C-band reconstructions of Fig. 7 is
not evident in the X-band images
of Fig. 8. Since the X-band images
were acquired at a bandwidth of
4 GHz, the resolution is 4 times
greater than that of the C-band
images. In these images, sidelobe
artifacts are again evident in the
rectangular windowed data in
Fig. 8a, and the application of a
Hanning window shows loss of res-
olution as seen in Fig. 8b. Applying
the three- and five-point interpola-
tive algorithms to these data yields
Figs. 8c and 8d, respectively. The
five-point formula is particularly
well suited to the high-resolution
X-band image, where small details
are much more apparent. Features
that can be seen easily include
antennas on the front body of the
drone, air intake on the bottom,
ical stabilizers, engine nacelle, and
 the back of the drone. Finally, the
own in Fig. 8e is the result of per-

point minimization on the Hanning
rpolative images as previously de-
que provides greater sidelobe reduc-
artifacts due to the SVA algorithm
ed.

ve motion of a coherent wideband
 is such that a circular synthetic

ed, tomographic processing can be
 image. With this processing, the
d incrementally as the data become

ination or identification applica-
e might be sufficient for a classifi-

graphic processing could improve
plications where images are used.
ication might be to image rotating
s from missile intercepts.
t was shown that one-dimensional
echniques can be applied to the
 to back-projection to reduce side-
mensional image. With this appli-
mensional windows, dependence in
s is removed and each incremental

the sidelobe reduction. The five-
f the SVA algorithm was shown to
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perform best in reducing the sidelobe artifacts in the
reconstructed image. Particularly since a native two-
dimensional implementation of the five-point formula-
tion has not been devised, this technique offers
a potentially powerful tool in image reconstruction.
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